Abstract:Integrated sensing and communication (ISAC) emerged as a key feature of next-generation 6G wireless systems, allowing them to achieve high data rates and sensing accuracy. While prior research has primarily focused on addressing communication safety in ISAC systems, the equally critical issue of sensing safety remains largely ignored. In this paper, a novel threat to the sensing safety of ISAC vehicle networks is studied, whereby a malicious reconfigurable intelligent surface (RIS) is deployed to compromise the sensing functionality of a roadside unit (RSU). Specifically, a malicious attacker dynamically adjusts the phase shifts of an RIS to spoof the sensing outcomes of a vehicular user (VU)'s echo delay, Doppler shift, and angle-of-departure (AoD). To achieve spoofing on Doppler shift estimation, a time-varying phase shift design on the RIS is proposed. Furthermore, the feasible spoofing frequency set with respect to the Doppler shift is analytical derived. Analytical results also demonstrate that the maximum likelihood estimator (MLE) of the AoD can be significantly misled under spoofed Doppler shift estimation. Simulation results validate our theoretical findings, showing that the RIS can induce a spoofed velocity estimation from 0.1 m/s to 14.9 m/s for a VU with velocity of 10 m/s, and can cause an AoD estimation error of up to 65^{\circ} with only a 5^{\circ} beam misalignment.
Abstract:Cellular vehicle-to-everything (C-V2X) networks provide a promising solution to improve road safety and traffic efficiency. One key challenge in such systems lies in meeting quality-of-service (QoS) requirements of vehicular communication links given limited network resources, particularly under imperfect channel state information (CSI) conditions caused by the highly dynamic environment. In this paper, a novel two-phase framework is proposed to instill resilience into C-V2X networks under unknown imperfect CSI. The resilience of the C-V2X network is defined, quantified, and optimized the first time through two principal dimensions: absorption phase and adaptation phase. Specifically, the probability distribution function (PDF) of the imperfect CSI is estimated during the absorption phase through dedicated absorption power scheme and resource block (RB) assignment. The estimated PDF is further used to analyze the interplay and reveal the tradeoff between these two phases. Then, a novel metric named hazard rate (HR) is exploited to balance the C-V2X network's prioritization on absorption and adaptation. Finally, the estimated PDF is exploited in the adaptation phase to recover the network's QoS through a real-time power allocation optimization. Simulation results demonstrate the superior capability of the proposed framework in sustaining the QoS of the C-V2X network under imperfect CSI. Specifically, in the adaptation phase, the proposed design reduces the vehicle-tovehicle (V2V) delay that exceeds QoS requirement by 35% and 56%, and improves the average vehicle-to-infrastructure (V2I) throughput by 14% and 16% compared to the model-based and data-driven benchmarks, respectively, without compromising the network's QoS in the absorption phase.
Abstract:Traditional reinforcement learning (RL)-based learning approaches for wireless networks rely on expensive trial-and-error mechanisms and real-time feedback based on extensive environment interactions, which leads to low data efficiency and short-sighted policies. These limitations become particularly problematic in complex, dynamic networks with high uncertainty and long-term planning requirements. To address these limitations, in this paper, a novel world model-based learning framework is proposed to minimize packet-completeness-aware age of information (CAoI) in a vehicular network. Particularly, a challenging representative scenario is considered pertaining to a millimeter-wave (mmWave) vehicle-to-everything (V2X) communication network, which is characterized by high mobility, frequent signal blockages, and extremely short coherence time. Then, a world model framework is proposed to jointly learn a dynamic model of the mmWave V2X environment and use it to imagine trajectories for learning how to perform link scheduling. In particular, the long-term policy is learned in differentiable imagined trajectories instead of environment interactions. Moreover, owing to its imagination abilities, the world model can jointly predict time-varying wireless data and optimize link scheduling in real-world wireless and V2X networks. Thus, during intervals without actual observations, the world model remains capable of making efficient decisions. Extensive experiments are performed on a realistic simulator based on Sionna that integrates physics-based end-to-end channel modeling, ray-tracing, and scene geometries with material properties. Simulation results show that the proposed world model achieves a significant improvement in data efficiency, and achieves 26% improvement and 16% improvement in CAoI, respectively, compared to the model-based RL (MBRL) method and the model-free RL (MFRL) method.
Abstract:Beamforming is a key technology in millimeter-wave (mmWave) communications that improves signal transmission by optimizing directionality and intensity. However, conventional channel estimation methods, such as pilot signals or beam sweeping, often fail to adapt to rapidly changing communication environments. To address this limitation, multimodal sensing-aided beam prediction has gained significant attention, using various sensing data from devices such as LiDAR, radar, GPS, and RGB images to predict user locations or network conditions. Despite its promising potential, the adoption of multimodal sensing-aided beam prediction is hindered by high computational complexity, high costs, and limited datasets. Thus, in this paper, a resource-efficient learning approach is proposed to transfer knowledge from a multimodal network to a monomodal (radar-only) network based on cross-modal relational knowledge distillation (CRKD), while reducing computational overhead and preserving predictive accuracy. To enable multimodal learning with realistic data, a novel multimodal simulation framework is developed while integrating sensor data generated from the autonomous driving simulator CARLA with MATLAB-based mmWave channel modeling, and reflecting real-world conditions. The proposed CRKD achieves its objective by distilling relational information across different feature spaces, which enhances beam prediction performance without relying on expensive sensor data. Simulation results demonstrate that CRKD efficiently distills multimodal knowledge, allowing a radar-only model to achieve $94.62\%$ of the teacher performance. In particular, this is achieved with just $10\%$ of the teacher network's parameters, thereby significantly reducing computational complexity and dependence on multimodal sensor data.
Abstract:This white paper discusses the role of large-scale AI in the telecommunications industry, with a specific focus on the potential of generative AI to revolutionize network functions and user experiences, especially in the context of 6G systems. It highlights the development and deployment of Large Telecom Models (LTMs), which are tailored AI models designed to address the complex challenges faced by modern telecom networks. The paper covers a wide range of topics, from the architecture and deployment strategies of LTMs to their applications in network management, resource allocation, and optimization. It also explores the regulatory, ethical, and standardization considerations for LTMs, offering insights into their future integration into telecom infrastructure. The goal is to provide a comprehensive roadmap for the adoption of LTMs to enhance scalability, performance, and user-centric innovation in telecom networks.
Abstract:This paper pioneers the field of multi-user holographic unmanned aerial vehicle (UAV) communications, laying a solid foundation for future innovations in next-generation aerial wireless networks. The study focuses on the challenging problem of jointly optimizing hybrid holographic beamforming and 3D UAV positioning in scenarios where the UAV is equipped with a reconfigurable holographic surface (RHS) instead of conventional phased array antennas. Using the unique capabilities of RHSs, the system dynamically adjusts both the position of the UAV and its hybrid beamforming properties to maximize the sum rate of the network. To address this complex optimization problem, we propose an iterative algorithm combining zero-forcing digital beamforming and a gradient ascent approach for the holographic patterns and the 3D position optimization, while ensuring practical feasibility constraints. The algorithm is designed to effectively balance the trade-offs between power, beamforming, and UAV trajectory constraints, enabling adaptive and efficient communications, while assuring a monotonic increase in the sum-rate performance. Our numerical investigations demonstrate that the significant performance improvements with the proposed approach over the benchmark methods, showcasing enhanced sum rate and system adaptability under varying conditions.
Abstract:Reconfigurable holographic surfaces (RHS) have emerged as a transformative material technology, enabling dynamic control of electromagnetic waves to generate versatile holographic beam patterns. This paper addresses the problem of joint hybrid holographic beamforming and user scheduling under per-user minimum quality-of-service (QoS) constraints, a critical challenge in resource-constrained networks. However, such a problem results in mixed-integer non-convex optimization, making it difficult to identify feasible solutions efficiently. To overcome this challenge, we propose a novel iterative optimization framework that jointly solves the problem to maximize the RHS-assisted network sum-rate, efficiently managing holographic beamforming patterns, dynamically scheduling users, and ensuring the minimum QoS requirements for each scheduled user. The proposed framework relies on zero-forcing digital beamforming, gradient-ascent-based holographic beamformer optimization, and a greedy user selection principle. Our extensive simulation results validate the effectiveness of the proposed scheme, demonstrating their superior performance compared to the benchmark algorithms in terms of sum-rate performance, while meeting the minimum per-user QoS constraints
Abstract:Imagination in world models is crucial for enabling agents to learn long-horizon policy in a sample-efficient manner. Existing recurrent state-space model (RSSM)-based world models depend on single-step statistical inference to capture the environment dynamics, and, hence, they are unable to perform long-term imagination tasks due to the accumulation of prediction errors. Inspired by the dual-process theory of human cognition, we propose a novel dual-mind world model (DMWM) framework that integrates logical reasoning to enable imagination with logical consistency. DMWM is composed of two components: an RSSM-based System 1 (RSSM-S1) component that handles state transitions in an intuitive manner and a logic-integrated neural network-based System 2 (LINN-S2) component that guides the imagination process through hierarchical deep logical reasoning. The inter-system feedback mechanism is designed to ensure that the imagination process follows the logical rules of the real environment. The proposed framework is evaluated on benchmark tasks that require long-term planning from the DMControl suite. Extensive experimental results demonstrate that the proposed framework yields significant improvements in terms of logical coherence, trial efficiency, data efficiency and long-term imagination over the state-of-the-art world models.
Abstract:The emergence of optical intelligent reflecting surface (OIRS) technologies marks a milestone in optical wireless communication (OWC) systems, enabling enhanced control over light propagation in indoor environments. This capability allows for the customization of channel conditions to achieve specific performance goals. This paper presents an enhancement in downlink cell-free OWC networks through the integration of OIRS. The key focus is on fine-tuning crucial parameters, including transmit power, receiver orientations, OIRS elements allocation, and strategic placement. In particular, a multi-objective optimization problem (MOOP) aimed at simultaneously improving the network's spectral efficiency (SE) and energy efficiency (EE) while adhering to the network's quality of service (QoS) constraints is formulated. The problem is solved by employing the $\epsilon$-constraint method to convert the MOOP into a single-objective optimization problem and solving it through successive convex approximation. Simulation results show the significant impact of OIRS on SE and EE, confirming its effectiveness in improving OWC network performance.
Abstract:Path planning is a complex problem for many practical applications, particularly in robotics. Existing algorithms, however, are exhaustive in nature and become increasingly complex when additional side constraints are incorporated alongside distance minimization. In this paper, a novel approach using vision language models (VLMs) is proposed for enabling path planning in complex wireless-aware environments. To this end, insights from a digital twin (DT) with real-world wireless ray tracing data are explored in order to guarantee an average path gain threshold while minimizing the trajectory length. First, traditional approaches such as A* are compared to several wireless-aware extensions, and an optimal iterative dynamic programming approach (DP-WA*) is derived, which fully takes into account all path gains and distance metrics within the DT. On the basis of these baselines, the role of VLMs as an alternative assistant for path planning is investigated, and a strategic chain-of-thought tasking (SCoTT) approach is proposed. SCoTT divides the complex planning task into several subproblems and solves each with advanced CoT prompting. Results show that SCoTT achieves very close average path gains compared to DP-WA* while at the same time yielding consistently shorter path lengths. The results also show that VLMs can be used to accelerate DP-WA* by efficiently reducing the algorithm's search space and thus saving up to 62\% in execution time. This work underscores the potential of VLMs in future digital systems as capable assistants for solving complex tasks, while enhancing user interaction and accelerating rapid prototyping under diverse wireless constraints.